Stem Cells May Provide Non Surgical Treatment for Spinal Cord Injuries

Researchers at MIT have pinpointed stem cells within the spinal cord that may lead to a new, non-surgical treatment for debilitating spinal-cord injuries.

The work by Konstantinos Meletis, a postdoctoral fellow at the Picower Institute, and colleagues at the Karolinska Institute in Sweden, could lead to drugs that might restore some degree of mobility to those who suffer from spinal-cord injuries.

In a developing embryo, stem cells differentiate into all the specialized tissues of the body. In adults, stem cells act as a repair system, replenishing specialized cells, but also maintaining the normal turnover of regenerative organs such as blood, skin or intestinal tissues.

The tiny number of stem cells in the adult spinal cord proliferate slowly or rarely, and fail to promote regeneration on their own. But recent experiments show that these same cells, grown in the lab and returned to the injury site, can restore some function in paralyzed rodents and primates.

The researchers found that neural stem cells in the adult spinal cord are limited to a layer of cube- or column-shaped, cilia-covered cells called ependymal cells. These cells make up the thin membrane lining the inner-brain ventricles and the connecting central column of the spinal cord.

“We have been able to genetically mark this neural stem cell population and then follow their behavior,” Meletis said. “We find that these cells proliferate upon spinal cord injury, migrate toward the injury site and differentiate over several months.”

The study uncovers the molecular mechanism underlying the tantalizing results of the rodent and primate and goes one step further: By identifying for the first time where this subpopulation of cells is found, they pave a path toward manipulating them with drugs to boost their inborn ability to repair damaged nerve cells.

“The limited functional recovery typically associated with central nervous system injuries is in part due to the failure of severed axons to regrow and reconnect with their target cells in the peripheral nervous system that extends to our arms, hands, legs and feet,” Meletis said. “The function of axons that remain intact after injury in humans is often compromised without insulating sheaths of myelin.”

If scientists could genetically manipulate ependymal cells to produce more myelin and less scar tissue after a spinal cord injury, they could potentially avoid or reverse many of the debilitating effects of this type of injury, the researchers said.

Source:
Massachusetts Institute of Technology

1 Comments on Stem Cells May Provide Non Surgical Treatment for Spinal Cord Injuries

New comments are currently closed for this post.
dr.mohammed naser
12/28/2008
hi there: i would like to ask about post noperative complications after stem cell surgery in the spinal cord cases thanks for fast answer and thanks for your efforts

Featured Products

OsteoGen Bone Grafting Plug
Combines bone graft with a collagen plug to yield the easiest and most affordable way to clinically deliver bone graft for socket preservation.
CevOss Bovine Bone Graft
Make the switch to a better xenograft! High volume of interconnected pores promotes new bone. Substantially equivalent to BioOss and NuOss.